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FOREWORD

This report was prepared by Roland N. Bell of the Gasdynamics Branch, Flight Mechanics
Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio.
The work was carried out under Project No. 1366, ‘‘Aerodynamics and Flight Mechanics,”’
Task No. 136602, ‘‘Performance and Trajectory Analysis of Hypervelocity Vehicles,’’ and
is part of the continuing Laboratory effort to study the advantages of high L/D reentry
systems, The work was administered by the Air Force Flight Dynamics Laboratory, Re-
search and Technology Division, Air Force Systems Command. The research reported
in this study was conducted during the period August 1964 through March 1965. The manu-
script was released by the author in April 1965 for publication as an RTD Technical Report.

The author is particularly indebted to Dr. Wilbur L, Hankey, Jr., Research Engineer
of the Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, for his
guidance and suggestions in finding the successful approach to the final solution as well
as for helpful suggestions throughout the investigation., Appreciation is also expressed
to L. E. Zaytown, Jr., 1/Lt, USAF, Digital Computation Division, Systems Engineering
Group, Wright-Patterson Air Force Base, Ohio, for his assistance in programming and
running the comparative computer study. Finally, thanks are extended to Miss Robin Hawkins
for aid in accomplishing the manuscript.

This technical report has been reviewed and is approved.

borvts, ZJW

IP P. ANTONATOS
Chief, Flight Mechanics Division
Air Force Flight Dynamics Laboratory
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ABSTRACT

This report derives closed-form expressions for predicting the longitudinal and lateral
range attainable by lifting reentry vehicles. The resultant equations sensitively and ac-
curately define the influence of L/D ratio, bank angle and entry velocity variations over
a spectrum of values. To illustrate the usefulness of the method, the derived expressions
were used to conduct a parametric reentry study covering a range of L/D ratios from
0.5 to 4.0, bank angles from 0° to 75° and entry velocities from 0.89Vc tc 0.99v o The

results of this study are compared with those obtained from a high speed computer study
using the same range of reentry conditions. As an aid to future investigators, a series of
curves is presented giving longitudinal and lateral range values for various selected L/D,
bank angle and entry velocity values. For those wishing to investigate reentry under con-
ditions not covered by these curves, a detailed ‘‘recipe’’ for utilizing the method is in-
cluded in an appendix. A comparison of the results of this method with those of more rigorous
methods for the same reentry conditions shows that the closed-form solution has sufficient
accuracy and sensitivity to be of considerable value to those persons requiring a rapid,
preliminary estimate of vehicle performance.
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SYMBOLS

AR

(L/D) sin ¢

drag coefficient

lift coefficient

drag (1bs)

acceleration (f/ sz) (32.174)
altitude above earth surface (ft)
lift (1bs)

vehicle mass (slugs)

range value (ft)

earth radius (NM) (3437.74)

radial distance from earth center to vehicle (ft)
ground track range (ft)

reentry time (sec)

time (sec)

velocity (f/s)

v/ v,

flight path angle (degrees)

change in a given quantity

vehicle heading angle in computer program {(degrees)
vehicle bank angle (degrees)

vehicle heading angle (degrees)

earth rotation rate (rad/sec)
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SUBSCRIPTS AND SUPERSCRIPTS

(.) differentiation with respect to time

() c earth circular value

( )y distance measured along initial heading flight path

( )Y distance measured perpendicular to initial heading flight path

() Ay =90° g:;;l: 3;1 It‘zgj;:ctory where heading is perpendicular to that at
ry

( )1 initial reentry conditions

( )2 parameter value at some cutoff condition
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INTRODUCTION

Because lifting reentry permits significant mission flexibility while subjecting the crew
to smaller g loads, it is the object of considerable investigative effort as typified by Ref-
erences 1 through 5. However, it does not ceadily lend itself to extersive scrutiny through
closed-form solutions, although there is a continuing effort to do so as seen by the numerous
treatments of the subject, Typical of these efforts are references 6 through 9. However,
in most cases, one or more of three drawbacks are found in these treatments which tend to
limit the applicability and usefulness of the solution, First, they may be restricted to L/D
ratios <2,0, Second, they may be somewhat cumbersome and difficult to employ because
each parameter does not stand alone thus permitting the effect of variations in that single
parameter to be easily noted, This second limitation makes parametric studies difficult to
undertake and somewhat detracts from the usefulness of the solution, Third, they may
not adequately handle lateral range prediction,

The solution proposed in this report is not restricted by these limitations, and retains
good accuracy over a wide range of the several variables involved, It is a closed-form
integration of the equations of motion governing unpowered, lifting, banked reentry, and
is restricted by a minimum of assumptions. The method has been employed to conduct
a very thorough, broad, parametric analysis of numerous L/D ratios, bank angles and
entry velocities to ascertain the limits of its range of applicability, The method fills an
existing need for a rapid, accurate means of parametrically analyzing lifting, maneuvering
reentry, The method can be employed with ease and does not require expensive computa-
tional equipment,

e e e s s S
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ANALYSIS

ASSUMPTIONS

The initial goal of this investigation was the develo.ment of a solution to the general
equations of motion governing lifting reentry which would not be hampered by restrictive
assumptions, Hence, it would be applicable to virtually any vehicle that could be devised,
undergoing any type of possible reentry maneuver. As long as the vehicle could be assvmed
to generate a given L/D and bank angle while enduring reentry heating (g loads generally
being unimportant) no weight, size, configuration or attitude limitations on the solution
should exist. However, as the investigation progressed, it became obvious that some as-
sumptions must be made in order to proceed to a meaningful solution. The following as-
sumptions were considered to be the least restrictive that could be employed.

(1) The :tmospheric reentry angle is sufficiently small to allow the approximations
Y =0° and cos Y= 1.0. Experience gained in the X-20 (Dyna-Soar) program indicated that
|y|$ 2.0° is generally true for lifting reentry, mainly due to heating and structural con-
siderations, Therefore, this assumption is not really restrictive and introduces insignificant
error,

(2) The value of the L/D ratio is held constant throughout the reentry. While this is not
the ideal trajectory from a minimum heating, maximum maneuverability standpoint, it
closely approximates an actual trajectory, generally deviating only in the early stages.
As a rule, when L/D modulation does take place (usually for phugoid damping or to limit
heating), deviations from a nominal value are not excessive and are often in both directions
from the nominal, thus reducing the error incurred by the assumption of constant L/D.
In addition, it is possible to account for L/D variation in the solution, but the solution
becomes so cumbersome the time 1loss outweighs any gains in accuracy or simulation
which might result and negates an important attribute of the method -~ speed.

(3) Local circular velocity is held at a constant value during reentry and the value
chosen is assumed unimportant as long as the local gravity and radius vector are con-
sistent with the chosen value. The selected values are those existing at sea level. Since
the change in the value from sea level to 300,000 ft altitude, where reentry is assumed
to occur, is less than 1 percent, any error incurred is assumed to be insignificant. Com-
parison with reentry studies beginning at other altitudes also justifies this assumption.

(4) A nonrotating earth is assumed. This is a standard assumption justified by noting
that earth rotation may be accounted for by proper timing of retrofire or by taking it into
account in the final computer analysis where accuracy is all-important.

(59 The bank angle is held constant throughout reentry, except when the heading change
reaches 90°, at which time it becomes 0° instantaneously until the completion of reentry.
Again, as in the case of the L/D ratio, this does not result in the optimum reentry maneuver
and the ability does exist to vary the bank angle if desired. However, to do so is quite
cumbersome and reduces the usefulness of the solution.

(6) Finally, reentry velocities are limited to suborbital values for reasons which are
readily apparent from examination of the final expressions obtained. This is perhaps the
mosi restrictive of all the assumptions and is merely accepted as the penalty for obtaining
the solution,
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DEVELOPMENT OF SOLUTION

The general equations of motion governing the atmospheric flight of a nonthrusting,
lifting, banked vehicle may be written in the form (Figure 1):

mV = -D-mg siny (N
,2

mV = m\'—‘:“L + L cos¢p - mg cosy (2)

mvy = L tind (3)
cos y

/ EARTH \

I
Figure 1. Vehicle Force Orientation

From the previously listed assumptions, these equations may be reduced to:

v - - F (4)
?

‘_l. + _L.M_ 9 z _L_EM 4.(1’- —|) : 0 (5)

r mV \"J mg VC

. _ Lsint

v = - (6)

Before proceeding to the ultimate goal of this report, the longitudinal and lateral range
prediction equations, several other results of significance can be obtained from Equations

4, 5, and 6, Combining Equations 4 and 5, obtain:

2
. - 2 9 v _
vV = T (vcz 1) (n
3
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From this we obtain:

L cos ? dVv
dt =z o) - Ve 7-—\’3 (8)

Assuming the time at the start of reentry is zero, the time (T) required to perform
a reentry is given by:
Y ‘ *
(1-v) (1+ )
T =« L cosg Ve T Ve Ve

D 2 g \' \ /]
4+ — | - =—
(+0) (- %

(9)

This equation has been evaluated for several reentry and terminal velocities and the
results are shown in Figure 2.

It is also possible to calculate the ground-track range from Equations 4 and 5 by elim-
inating time and installing distance as the independent variable. Thus, obtain:

vav . b _g (Vv _, (10)
ds L cos¢ 7 )

([
which may be rewritten in the form:

4
L Ve dv .
—_— C°$¢ — —2—!- \”)
(V) 9 V-V

Again, by letting the distance at the start of reentry be zero, the ground track range (S)
is given by:

L
s : | (12)

2

—_ —*-co' !:- In -—v‘-—'- Ii
Vi

vl

This equation has also been eva.aated for various reentry and terminal velocities and
the results are shown in Figure 3.

Now, defining the change in the heading angle, Ay, by the expression:

Ay =fy]vdt=f%dv

(13)
and by combing Equations 4 and 6 to obtain:
Y . _Lding (14)
v D Vv

e
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the change in the heading angle may be written:
v

Ay = -% sin¢/ ‘% (15)
Vi
which integrates readily to yield:
v
Ay = Tls- sing In v' (I6)

This defines the heading change with velocity change during reentry. While Equation 16
is useful in this form, it has even greater utility if rewritten in the form:

i
(7

"
onp (2( Uﬁisln$ )

since it is necessary to know the vehicle velocity when the heading change reaches 90°
in order to employ the closed-form solution. The results of employing Equation 17 for a
wide range of vehicle and reentry conditions are plotted in Figure 4 which is used extensively
for problem solution.

Vg =900 *

Having an equation for the heading change, it now is possible to proceed to the final
results, Assuming, as is commonly done, that the longitudinal and lateral range can be
written in the form:

Ry * fVcosA|ydt

f -z-dv cos Ay (18)

and

Ry = J v sin Ay at

respectively; then, by combining Equations 4 and 5 to obtain:

J % dVv sinAy (19)

v . _L cos ¢ v
2 S S - th (20)
%
and using Equation 16 for Ay , we obtain:
v
. L cos¢ f L. Vi Vvd V
Ry D o cos ( 5 sin ¢ In . ) |--3Lz (21)
V2 V2
c
and
; vdVv
L cost L . V
Ry = = 5 f sin ( D " ¢ In VL ) '1-r (22)
\Y) 2
2 Ve

for the longitudinal and lateral ranges, respectively.

In order to integrate, and also to simplify the writing of these expressions, the following
substitutions are made:

x:-an=lL\—’z=O. (23)
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Obviously, the last term in Equation 23 needs some explanation regarding its value.
Recall that a major purpose of the method is to obtain general expressions for use over
a wide range of conditions. Since altitude effects have been assumed unimportant, reentry
could be assumed to occur at any velocity irom circular speed down to zero in the extreme
or, in other words, the ratio Vl/ Vc could vary from 1 to 0. Thus, the range obtained from

reentry to some cutoff value, say atAy = 90°, could be written as the range from reentry
to zero velocity minus the range from cutoff to zero velocity with no loss in generality.
Extensive simplification is introduced into the analysis by this reasoning. Thus, each problem

may be treated as if presented in the form:

A/ V2 vi
fdv = fdv- fdv
v, 0 o

which is quite proper for a continuous function.

Thus, employing the terms in Equation 23, Equations 21 and 22 become:

? a
L VQ cosf L a xdx
R s —_ — s
X > . fcos(osingﬁlnx) —
0

and
"] X 1-x2

a
2
R s hw sln(hsin¢lng)&
Y D g D

To accomplish the integration, the following substitution is made:
y

X =.- dx S'Lz.z dy b = 'ID:' sin ¢
Then Equations 25 and 26 have the form:
o0
L cos g v f y e’ dy
R = -— — =
X 0 2 = cos | b(Ina + 2) oy

-2 In(a)

@

2 -

RY H % io‘Tﬂ-!gq-/.in [b('no.’.—;—)] &L
-2 in(a)

However, if we write the following relation:

(- -]

[ . 2 il

e
e k=0

then Equations 28 and 29 may be written:

Ry = %ﬂ'a-t/ cos[b(lno+%)]% o-nydy

-2In(a) n=|

(24)

(25)

(26)

(2n

(28)

(29)

(30)

(31)
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and

0o

2 °.

RY = .:;.l;i V'—c fsin[b(lno-&{—)] 2 onydy (32)
-2 In(a) nz=l

Equations 31 and 32 are readily integrable if one expands the sine and cosine terms and
integrates term by term. By proceeding as above, and judiciously combining terms, the
final expressions become:

V 2on
3 )
Rx:.':.ﬁ_“_tl’s.ozo "('VZ) (33)
Vi .tn
2 ! o (o)
Ry = (5) ndgesd X (3)
n=| nz*(% _‘%t,t

which define, respectively, the longitudinal and lateral range capabilities of a lifting, banked,
nonthrusting reentry vehicle. Note that these expressions are valid for any L/D value, any
bank angle <190°! and any entry velocity in the range 0< Vl/Vc< 1, since Equation 33 has

R 1
the form ng 1'6 for Vl/vc = 1 and would not converge. For practical reasons, values of

V1/Vc >0.995 were not considered in this analysis since this is a reasonable maximum
value for most suborbital analyses.

The series terms in Equations 33 and 34 have been evaluated over the following variable
values: (L/D) sin¢ from 0 to 4.0 and V,/V_from 0 to 0.995. The results are plotted in

Figures 5 and 6. For convenience, Figure 7 is a plot of velocity values ratioed to earth
circular values and will aid in the transfer among curves in the report.

COMPARATIVE COMPUTER STUDY

To ascertain the accuracy and range of applicability of this closed-form solution, and
also to serve as a basis for future use, an inclusive parametric study was undertaken and
accomplished employing this solution. The parameters studied and the range of values for
each were: vehicle L/D from 0.5 to 4 0; entry velocity from 0.89 Vc to 0.99 Vc; and bank

angles from 0° to 75°. The results of this study are shown in Figures 8 through 17. To check
these results a parametric computer study was also run over this range of parameter
values utilizing the Six-Degree-of-Freedom Computer Program (Reference 10) which
originated in the Flight Dynamics Laboratory. A comparison between the results obtained
from this computer study and those obtained employing the closed-form approximation is
given in Figures 18 through 32.
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The vehicle characteristics for the computer study are completely arbitrary, but are
considered reasonable for early, manned, maneuverable vehicles, Previous studies (Re-

ference 1) indicated that maneuverability and velocity loss were not greaily affected by
mass and reference area variations within reasonable limits. The values chosen for the

study are listed in Table 1.

TABLE 1

REENTRY CONDITIONS AND VEHICLE CHARACTERISTICS

h; = 300,000 ft mass = 500 slugs
y1 :-0.8° Area = 500 ft?
o = 90° 9] = O rad/sec

L/D CL Cpop

0.5 0.63978 1.27956

1.0 0.41662 0.41662

2.0 0.17248 0.08624

3.0 0.0873 0.0291

4.0 0.05208 0.01302
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DISCUSSION OF RESULTS

An endeavor to analyze each curve generated on a point-by-point basis would yield
no useful results. Rather, the general characteristics and trends are briefly considered,
with emphasis being placed on the characteristics that are most significant. Before pro-
ceeding with this discussion, however, two conditions which were chosen for final param-
eters in the computer runs should be considered,

The first condition is the reentry angle of -0.8° on which the computer runs were based.
Previous experience indicated that guidance capabilitie~ and vehicle structural limitations
resulted in a nominal reentry angle of slightly less ths: -0.8° with a tolerance of approxi-
mately +0.5°. This value has been carried over to the present report, Some trial cases were
run at other reentry angles from 0° to -2.0° to test the vehicle sensitivity to reentry angle.
It was found to have very little influence except for low L/D, high entry velocity conditions.
The -0.8 reentry angle also somewhat reduced the excessive phugoid motion inherent
in vehicles flying at constant L/D and very small incidence angles.

The second condition imposed for all computations was a cutoff velocity of 4000 f/s,
This was done for two reasons: (1) It was felt that hypersonic aerodynamics cannot be
applied below this value; (2) From the author’s previous experience, it was found that
the vehicle should be approximately over the intended landing sight by the time the velocity
dropped to 4000 f/s in order to make a safe dead stick landing. With these comments in
mind, it is possible to consider the comparative figures obtained by solving identical re-
entry problems employing the closed-form and computer solutions.

Considering Figures 18 through 32 it is evident that the method possesses no gross
errors since curve shape is quite similar in all cases. Generally, accuracy improves with
increasing L/D and decreasing reentry velocity. The first trend is highly desirable since
the lower L/D and ballistic configurations are already well documented in the literature,
Disagreement at the higher reentry velocities is rather easily explained from two aspects.
First, there is the characteristic phugoid motion which causes the vehicle to skip out and
back into the atmosphere several times before beginning its smooth reentry. While doing
this skipping, considerable longitudinal range is being obtained, but very little lateral range
is achieved until a significint loss in velocity has occurred. Then, the vehicle begins to
turn but does not have sufficient velocity remaining to generate the side force necessary
to reach the maximum potential lateral range. As reentry velocity decreases, phugoiding
is reduced and the two solutions agree more closely in their range predictions. An actual
reentry would probably be conducted with a modulated L/D to reduce the phugoid motion,
and to increase lateral range. Nevertheless, the closed-form solution does not account for this
phugoid motion, thus tending to underpredict longitudinal range slightly while overpredicting
lateral range, in some cases to an unacceptable degree. Perhaps some modification to the
solution could be used to reduce this error to a tolerable level. As a further point of interest,
lateral range was found to be virtually independent (< 1% variation) of entry angle (y) over
the range investigated.

Figures 33 through 38 are of particular value since these show a comparison between the
closed-form and computer maximum predicted longitudinal and lateral ranges as a function
of L/D and reentry velocity. The values from these figures are those generally quoted
when speaking of range capability and return-from-orbit performance. It may be seen
that agreement is good except for the high L/D, high velocity lateral range values which,
as stated earlier, are unacceptably in error.
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Figures 39 and 40 are presented to show the effects of altitude variation and earth rotation
on the attainable range {(Reference 11). Note that slightly different aerodynamics were
employed and a reentry angle of 0° was assumed at 250,000 ft, While this reentry angle is
slightly unrealistic from a guidance standpoint, it may be seen that the closed-form ex-
pression predicts performance adequately.

There is disagreement between the closed-form and the computer solutions regarding
the predicted longitudinal and lateral range coordination. For instance, computer runs
predict maximum lateral range for a bank angle (¢) near 60°, while the closed form pre-
dicts a value nearer to 45°. Therefore, entire footprints should be mapped out with the
closed-form solution in order to decide on approximate vehicle characteristics. Here,
the solution speed is readily appreciated as entire footprints are quickly obtained.

F. S. Nyland (Reference 12), in his independent investigation of the same problem, utilized
an approach very similar to that developed in this study and obtained identical results. How-
ever, the simpler resultant expressions and the graphical presentation of the series expansions
make the closed-form solution described in this report a more rapid technique to use over
a greater variety of imposed conditions. In addition, this report shows extensive comparisons
with computer solutions, illustrating the range of applicability and the regions where
significant errors occur.

10
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CONCLUSIONS

The closed-form solution is not without its limitations. However, its advantages far
outweigh these adverse characteristics.

1. The proposed closed-form solution predicts the longitudinal and lateral range cap-
abilities of maneuverable spacecraft with good accuracy over a wide range of reentry
conditions and vehicle characteristics.

2. The solution is rapid and simple to employ allowing extensive parametric studies
in a minimum of time.

3. Care must be employed in the mechanics of application especially in reading the
curves representing the series expansions.

4. Each parameter stands alone and hence may be varied independently. In addition,
the built-in sensitivity of the solution permits a rapid study of the effects of small varia-

tions in any given parameter.

5. Entire footprints should be mapped out because of some discrepancies in the bank
angle-range correspondence. However, the difficulty is minor unless severe bank angle
restrictions are likely to be imposed on the final configuration.

6. Overall, the solution fills a need for a rapid, accurate, simple method for predicting

the performance of maneuverable reentry vehicles over a wide range of conditions and
vehicle characteristics and attitudes.
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APPENDIX
UTILIZATION PROCEDURE

While the closed-form solution is simple and straightforward to use, a step-by-step
‘‘recipe’’ is delineated here to prevent interpretation errors and to insure the maximum
benefit from its use. First, the following initial conditions and vehicle information are
required: (1) The vehicle L/D values; (2) The range of bank angles (¢) to be considered;
and (3) The reentry velocity range to be investigated, With this information at hand the
recommended procedure is as follows:

(1) Calculate all (L/D) sin ¢ values resulting from the range of values chosen for L/D
and ¢b.

(2) For the reentry velocity values chosen, and the (L/D) sin¢ values calculated, read
the velocity value from Figure 4 where Ay = 90°,

(3) From Figures 5a through 5e read two values of the longitudinal range series function--one
at the reentry velocity chosen and one at the velocity whereAv.[/= 90° or at V = 4000 {/s,
whichever is greater, but both, naturally, onthe same (L/D) sin ¢ curve previously calculated.

(4) Subtract the second reading from the first resulting in the net longitudinal series
value, .

(5) Multiply the net series value by the quantities in front of the series in Equation 33,
The result obtained is the longitudinal range capability of the vehicle under consideration
for the specified reentry and attitude conditions.

The procedure for obtaining the lateral range capability parallels that for the longitudinal
range in some cases, but in others it may become somewhat more involved, as will be seen,
Steps 1 through 4 are essentially the same as those above and are merely repeated for
completeness,

(1) Calculate the applicable(L/D)sin ¢pvalues,
(2) Read the velocity for Ay = 90° under the imposed conditions.

(3) From Figures 6a through 6c read the two values of the lateral range series function-one
at the reentry conditions and one at the velocity value for Ay = 90° or V = 4000 f/s, whichever
is greater, and again, both on the same(L/D)sing curve,

(4) Subtract the second reading from the first resulting in the net lateral range series
value, Here the similarity between the two calculations may end--according to this test:
If the value of the velocity for Ay = 90° as read from Figure 4 is less than 4000 f/s, the
net lateral range value calculated above is the total value, If the velocity for A ¢ = 90° is
greater than 4000 f/s further computation is necessary and is described in steps 5 through
7. For either case, multiply the net lateral range series value from step 4 by the proper
multiplying factor from Equation 34, For the case where the velocity for Ay = 90° is less
than 4000 f/s, this is the total lateral range for the selected reentry vehicle and imposed
conditions and attitude, However, if the velocity for A y = 90° is greater than 4000 f/s,
an additional calculation must be made,

(5) Once the vehicle is normal to the original flight path ( A\p = 90°) further turning is detri-
mental to the mission, generally speaking. However, the vehicle still possesses what may

13
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be a considerable amount of velocity which should be converted to range. To take advantag:
of this, we assume the vehicle is rolled to a zero bank angle (to preclude further turning
and flown in this attitude until the velocity reaches 4000 f/s, To complete the solution then
Fi7ures 5¢ a through 5e for longitudinal range are entered at the velocity for A Y =90° an
(L/D) sing =0 ,

(6) Again, two values for the series function are read--one at the velocity for A\[/ = 90
and one at 4000 f/s,

(7 Subtracting the second reading from the first and multiplying by the proper facto:
from Equation 33, with 4; = 0°, results in the final portion of the lateral range value, Th
sum of the lateral ranges from steps (5) and (7), if any, yields the total lateral range pre
dicted for the reentry vehicle and the conditions and attitude chosen,

As can be seen, the procedure is straightforward, but the steps must be followed wit
precision to avoid confusion, The underscored items are particularly important and shoul
be carefully noted to prevent obtaining erroneous results, A final note: Extreme care mus
be exercised in reading the series values from Figures 5 and 6 since subtractions of smal
or nearly equal quantities are often involved; the smallest error here is multiplied man
times in the final result,

As a convenience, the following sample tabulationis extracted from the author’s calculation
and presented as a method check, A tabulation of this type is repeated as often as necessar
to accomplish a complete parametric study for the conditions specified. The initial condition
are L/D =2,0; V/V _=0. 99;¢= 15° and 75°,

TABLE II

LONGITUDINAL RANGE

L, cos
¢ (L/D) singp VA'W' 90° zentry ZAW =90° or Zmn (_D) 2 Ry /Re
(V =4000 ¢/s)
15° 0.518 1200 3.845 0.27 3.818 0.966 3.685
15°¢ 1. 432 11300 3.35 0.17 3.18 0.2588 | 0.824

TABLE I

LATERAL RANGE

[_z mic si L ,¢
¢ (2 zzw:so' or| 2 Zz_w:so' Zyea000 | Zee] BT ETE (5055 Ry /R

entry net net
V =4000tA
15°] 1.48 0.021 1.459 - - - 0.25 = 0. 365
%] 1.01 0.107 0.903 0.21 0.025 0.185 0.25 1.0 0.411

14
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